📢📢📢 阿里云双十一,赠送您一张全场8折折扣优惠券

📢📢📢 2核2G3M的服务器,99元一年,新老用户续费同享!!

Facebook的类ChatGPT大语言模型LLaMA模型下载地址

分享一个 前几天泄露出来的Facebook的AI语言模型,LLaMA,总共220G

运行

有官方和第三方的运行示例,里面没有模型下载地址,官方途径是需要邮箱申请。

官方例子: https://github.com/facebookresearch/llama
内存优化版: https://github.com/tloen/llama-int8 据说只要3090可以运行,作者4090测试完成
计算优化版: https://github.com/markasoftware/llama-cpu CPU可以运行,但是需要32G内存
C/C++版本,普通机器CPU可以执行,https://github.com/ggerganov/llama.cpp 这个版本非常厉害,树莓派3B+就能运行7B模型,运行速度比较慢

下载

下载的脚本地址来自这里, https://github.com/shawwn/llama-dl

已经被DMCA了,无法打开,文末已获取了下载地址,可以直接下载

下载速度还行,下了一个晚上, 我已经下载好了。下载链接导出来之后,百度云离线下载不了,迅雷离线可以秒下,非常厉害。

总共220G

原下载脚本

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
PRESIGNED_URL="https://agi.gpt4.org/llama/LLaMA/*"

MODEL_SIZE="7B,13B,30B,65B" # edit this list with the model sizes you wish to download
TARGET_FOLDER="./" # where all files should end up

declare -A N_SHARD_DICT

N_SHARD_DICT["7B"]="0"
N_SHARD_DICT["13B"]="1"
N_SHARD_DICT["30B"]="3"
N_SHARD_DICT["65B"]="7"

echo "Downloading tokenizer"
wget ${PRESIGNED_URL/'*'/"tokenizer.model"} -O ${TARGET_FOLDER}"/tokenizer.model"
wget ${PRESIGNED_URL/'*'/"tokenizer_checklist.chk"} -O ${TARGET_FOLDER}"/tokenizer_checklist.chk"

(cd ${TARGET_FOLDER} && md5sum -c tokenizer_checklist.chk)

for i in ${MODEL_SIZE//,/ }
do
echo "Downloading ${i}"
mkdir -p ${TARGET_FOLDER}"/${i}"
for s in $(seq -f "0%g" 0 ${N_SHARD_DICT[$i]})
do
wget ${PRESIGNED_URL/'*'/"${i}/consolidated.${s}.pth"} -O ${TARGET_FOLDER}"/${i}/consolidated.${s}.pth"
done
wget ${PRESIGNED_URL/'*'/"${i}/params.json"} -O ${TARGET_FOLDER}"/${i}/params.json"
wget ${PRESIGNED_URL/'*'/"${i}/checklist.chk"} -O ${TARGET_FOLDER}"/${i}/checklist.chk"
echo "Checking checksums"
(cd ${TARGET_FOLDER}"/${i}" && md5sum -c checklist.chk)
done

提取出来之后的下载地址

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
wget https://agi.gpt4.org/llama/LLaMA/tokenizer.model -O ./tokenizer.model
wget https://agi.gpt4.org/llama/LLaMA/tokenizer_checklist.chk -O ./tokenizer_checklist.chk
wget https://agi.gpt4.org/llama/LLaMA/7B/consolidated.00.pth -O ./7B/consolidated.00.pth
wget https://agi.gpt4.org/llama/LLaMA/7B/params.json -O ./7B/params.json
wget https://agi.gpt4.org/llama/LLaMA/7B/checklist.chk -O ./7B/checklist.chk
wget https://agi.gpt4.org/llama/LLaMA/13B/consolidated.00.pth -O ./13B/consolidated.00.pth
wget https://agi.gpt4.org/llama/LLaMA/13B/consolidated.01.pth -O ./13B/consolidated.01.pth
wget https://agi.gpt4.org/llama/LLaMA/13B/params.json -O ./13B/params.json
wget https://agi.gpt4.org/llama/LLaMA/13B/checklist.chk -O ./13B/checklist.chk
wget https://agi.gpt4.org/llama/LLaMA/30B/consolidated.00.pth -O ./30B/consolidated.00.pth
wget https://agi.gpt4.org/llama/LLaMA/30B/consolidated.01.pth -O ./30B/consolidated.01.pth
wget https://agi.gpt4.org/llama/LLaMA/30B/consolidated.02.pth -O ./30B/consolidated.02.pth
wget https://agi.gpt4.org/llama/LLaMA/30B/consolidated.03.pth -O ./30B/consolidated.03.pth
wget https://agi.gpt4.org/llama/LLaMA/30B/params.json -O ./30B/params.json
wget https://agi.gpt4.org/llama/LLaMA/30B/checklist.chk -O ./30B/checklist.chk
wget https://agi.gpt4.org/llama/LLaMA/65B/consolidated.00.pth -O ./65B/consolidated.00.pth
wget https://agi.gpt4.org/llama/LLaMA/65B/consolidated.01.pth -O ./65B/consolidated.01.pth
wget https://agi.gpt4.org/llama/LLaMA/65B/consolidated.02.pth -O ./65B/consolidated.02.pth
wget https://agi.gpt4.org/llama/LLaMA/65B/consolidated.03.pth -O ./65B/consolidated.03.pth
wget https://agi.gpt4.org/llama/LLaMA/65B/consolidated.04.pth -O ./65B/consolidated.04.pth
wget https://agi.gpt4.org/llama/LLaMA/65B/consolidated.05.pth -O ./65B/consolidated.05.pth
wget https://agi.gpt4.org/llama/LLaMA/65B/consolidated.06.pth -O ./65B/consolidated.06.pth
wget https://agi.gpt4.org/llama/LLaMA/65B/consolidated.07.pth -O ./65B/consolidated.07.pth
wget https://agi.gpt4.org/llama/LLaMA/65B/params.json -O ./65B/params.json
wget https://agi.gpt4.org/llama/LLaMA/65B/checklist.chk -O ./65B/checklist.chk